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TWO MOVEMENT MODELS

Sensitivity of metapopulation models of infectious disease 
dynamics to underlying host mobility networks
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APPLICATION: MALARIA TRANSMISSION ON BIOKO ISLAND

• Construct spatially-explicit transmission model describing malaria transmission on Bioko Island, Equatorial Guinea
• Goal is to estimate spatially heterogeneous transmission intensity in each area on the island
• Calibrate movement model(s) to travel survey data
• Calibrate transmission model(s) to estimates of malaria prevalence
• Find realistic R0 estimates using the Time at Risk movement model; unrealistic R0 estimates using the Flux movement model
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• “Eulerian”
• Nomadism; migration; planktonic
• Requires 1 time scale per location pair
• Describes memoryless, 1-step 

frequency fab of movement a → b

• “Lagrangian”
• Commuting; tourism; home ranges
• Requires 2 time scales per location pair
• Describes frequency of traveling to 

another location (φab) and the rate of 
returning home (τab): a → b → a

The Time at Risk model has twice as many free parameters as the Flux model, which also 
means it requires more detailed data sets to parameterize. The Time at Risk model requires 
knowing the rates at which people leave home and return home, meaning that it requires 
GPS trip loggers, travel surveys, disaggregated cell phone call data records, or similarly 
detailed information on human travel. The Flux model only requires knowing the volume of 
travelers moving between two locations, as in aggregated flux data.  Time at Risk model 
data are sufficient for parameterizing a Flux model, but not vice-versa.
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• Calibrate movement models to the same movement data
• Use movement models to parameterize the interactions 

between location 1 and location 2
• Holding β2 fixed, how does prevalence I1 vary with β1?
• Given prevalence I1, what can we infer about β1?
• SIS model inference sensitive to movement model

CONCLUSIONS
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• Our goal is to infer transmission parameters like R0 based on prevalence 
estimates, census data, and host movement data

• Use a network metapopulation compartmental model of infectious disease 
dynamics; parameterize the strengths of interactions between 
metapopulations using host movement data

• There are different candidate models for describing host movement. We 
investigate how infectious disease model outcomes are affected by the 
choice of host movement models.

The Time at Risk model gives a more detailed description of host movement, specifying 
how much time a host spends exposed while traveling before returning home. As a 
way of directly comparing the two movement models, we parameterize them based on the 
same data by matching volumes of travelers moving between each location pair.

• Comparing the two movement models directly, we find that the disease model’s outcome 
does depend on one’s choice of movement model in certain parameter regimes. This is 
true even if the two models are calibrated to the same data set.

• Failing to account for movement model sensitivity can lead to erroneous or even 
nonsensical results.  Specifically, the flux model may fail to accurately reflect the time 
spent exposed while traveling and produce inaccurate or unrealistic predictions.

• Travel data sets that enable detailed parameterization of movement models are 
necessary both for model accuracy and for model sensitivity analysis.


