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Simulating Malaria Transmission

• Our group builds mechanistic simulation models of malaria transmission
• Malaria 

o Parasitic disease
o Vector-borne – Anopheles mosquitoes
o Tropical climates

• An ecological disease
o Risk of infection strongly dictated by local environment
o Transmission intensities can vary dramatically, even across short distances

• Simulation models representing the real world require knowing how 
transmission intensities vary in geographical space
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Malaria Prevalence Mapping
• Geostatistical estimates of Parasite Rate (PR) – a measure of prevalence
• Example: Bioko Island, Equatorial Guinea

o Low transmission location, surrounded by high-transmission locations
o Island residents who travel are highly likely to bring back infections with them
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Transmission Intensity Estimation

• Start with data inputs:
o Prevalence maps
o Travel survey data

• Combine with simulation model
o Transmission model – how infection spreads
o Movement model – how people move

• Goal: Estimate transmission intensity
o Map of PR ⟶ Map of R0

o How high does R0 need to be to produce the 
PR levels seen in the maps?
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Sensitivity to Movement Model
• R0 estimation, using 2 different candidate movement models

o Same input data
o Same transmission model
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Metapopulation Movement Models
• Metapopulation 

o epidemiologically isolated population which interacts weakly with other populations
o e.g. geographically isolated; interact through infrequent human travel

• Movement models: the rules which govern how people travel
o Who travels?
o How frequently do they travel?
o Where do they go?
o How long do they spend away?
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Movement Models – Flux model
• “Flux model”  -or- “Eulerian model”
• Planktonic – hosts diffuse between metapopulations
• “How many people moved from here to there?”
• One rate for each origin-destination pair of locations

o The rate at which residents leave
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r1→2dN1
dt = r2→1N2 − r1→2N1

dN2
dt = r1→2N1 − r2→1N2

N = N1 +N2 1
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Movement Models – Time at Risk
• “Time at risk model” -or- “Lagrangian model”
• “How many people moved from here to there?” & “How long did they stay there?”
• Two rates per origin-destination pair

o The rate at which residents leave
o The rate at which travelers return
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r1→2
τ1→2

dN1,1

dt = τ1→2N1,2 − r1→2N1,1

dN1,2

dt = r1→2N1,1 − τ1→2N1,2

N1 = N1,1 + N1,2



Movement Model Comparison

• Data sources:
o Census migration data
o Cell phone call location records

• Fewer parameters
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• Requires knowing travel duration
• Data sources:

o GPS trip loggers
o Travel survey

• Specify time spent away while traveling

Flux: Time at Risk:



Disease Transmission Modeling

• Example: Susceptible-Infected-Susceptible Model
o Will be showing numerical results from ODEs
o Malaria-related models are more complicated, but still comparable to SIS

• Parameters that matter:
o Duration of Infection: 1/γ
o Transmission intensity – β/γ
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Metapopulation Transmission Models

• What rules do we use to allow these metapopulations to interact?
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Transmission + Movement
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Flux: Time at Risk:

• Combine our metapopulation disease model with our two movement models



Direct Model Comparison
• Imagine calibrating to same movement data
• Set movement parameters to match total number of people moving from 

1→2 or from 2→1 for both models 

15



Movement Model Comparison
• Parameters that matter:

o Infectious period: 1/γ
o Transmission intensity - β/γ
o Duration of travel - r/γ

• Imagine one scenario: 
o (γ=1)
o “Short Travel” r/γ > 1
o High transmission in location 2: β/γ > 1
o Measure location 1 Prevalence (I1) as we 

vary β in location 1
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Mismatched predictions
• Infer intensity from prevalence

o Flux model predicts β < 1
o Time at Risk model predicts β > 1

• We can start from the same data 
and same transmission models, 
we get very different results!
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Other parameter regimes

• Disagreement when travel duration is shorter 
than infectious period
o (Malaria 1/γ ≈ 200 days)

• Agreement when travel duration is bigger than 
infectious period

• Suggests a mechanism for the disagreement:
o When travel is short, the Time at Risk model 

constrains the amount of time people spend at 
risk while traveling; the Flux model does not
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Return to Malaria
• Bioko Island: a low transmission region where people frequently travel 

to a high transmission region
• Estimate R0 using same prevalence and travel data
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Return to Malaria
• Time at Risk model allows us to correctly specify the amount of time spent at 

risk while traveling, especially off-island
• The Flux model overestimates risk; produces nonsensical results
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Lessons Learned
• Using simulations that combine models of disease 

transmission and host movement
• The choice of movement model really matters
• The difference is most important when travel occurs 

over a short period of time compared to the disease 
infectious period

• Being careful when using Flux models
o Easier to parameterize (half as many parameters)
o Recent availability of call data records and other data sets
o But this doesn’t mean we can always use the Flux model 

and obtain accurate epidemiological answers
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Other parameter regimes

• Traveling from endemic setting to low-transmission setting
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SIS + Flux Model Equations
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For two metapopulations:

For any number of metapopulations:

dI1
dt

= β1I1(N1 − I1)− γI1︸ ︷︷ ︸
Transmission

− r1,2I1︸ ︷︷ ︸
Leaving

+ r2,1I2︸ ︷︷ ︸
Arriving

dIi
dt

= βiIi(Ni − Ii) − γIi︸ ︷︷ ︸
Transmission

−
∑

j ̸=i

ri,jIi

︸ ︷︷ ︸
Leaving

+
∑

j ̸=i

rj,iIj

︸ ︷︷ ︸
Arriving



SIS + Time at Risk Equations
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For any number of metapopulations:
dIi,i
dt

= βi
∑

k Ik,i∑
k Nk,i

(Ni,i − Ii,i) − γIi,i
︸ ︷︷ ︸

Transmission

−
∑

k�=i

ri,kIi,i

︸ ︷︷ ︸
Outbound

+
∑

k

τi,kIi,k

︸ ︷︷ ︸
Inbound

dIi,j
dt

= βj
∑

k Ik,j∑
k Nk,j

(Ni,j − Ii,j) − γIi,j
︸ ︷︷ ︸

Transmission

+ ri,jIi,i︸ ︷︷ ︸
Outbound

− τi,jIi,j︸ ︷︷ ︸
Inbound



Ross-Macdonald Equations
• Transmission among humans (X) is now driven through coupling to infectious 

mosquitoes (Z)

• We can extend this model to incorporate movement, allowing humans to 
travel between many different locations. Each of those locations may have its 
own transmission intensity, defined by the local mosquito population
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dX
dt = ba Z

N (N −X)− rX

dZ
dt = acXN (Me−gn − Z)− gZ



SIR + Movement Modeling

• Imagine instead modeling SIR-type dynamics across metapopulations 
connected by infrequent travel

• How does an SIR outbreak affect the residual population of susceptibles?
o (Can calculate R0 this way)
o Flux movement model homogenizes residual population sizes across all 

metapopulations
o Time at Risk movement model preserves transmission heterogeneity

• Dynamics change as well
o Flux movement model allows for oscillations, caused by back-filling of susceptibles

in certain parameter regimes
o Time at Risk movement model does not
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