Tricks: Always guess

- If you can eliminate at least one answer, guess
- Correct answers worth 1 point
- Incorrect answers worth -.25 points
- Totally random guess:
 - .2*1 + .8*(-.25) = 0
 - 0 expected score gain
- Random guess, eliminating one answer:
 - .25*1 + .75*(-.25) = .0625
 - 1/16 of a point expected score gain
 - (Better than nothing)
- All test-taking strategies that will make the Physics GRE easier depend on your ability to use intuition to immediately eliminate one or more answers.

Tricks: Orders of Magnitude

$$e = 3 = \pi = 4 = 10^{1/2}$$

- Arithmetic does not need to be exact
- Save time by avoiding digits larger than 1 or 2.
- Collect orders of magnitude
- Numerical answers often differ by enough that you avoid rounding errors this way

Tricks: Orders of Magnitude

Which of the following is most nearly the mass the Earth? (The radius of the Earth is about 6.4×10^6 meters.)

(A)
$$6 \times 10^{24} \text{ kg}$$

(B)
$$6 \times 10^{27} \text{ kg}$$

(C)
$$6 \times 10^{30} \text{ kg}$$

(D)
$$6 \times 10^{33} \text{ kg}$$

(E)
$$6 \times 10^{36} \text{ kg}$$

Hint: $G = 6.67 \times 10^{-11} \text{ meter}^3/(\text{kilogram second}^2)$

Tricks: Orders of Magnitude

Which of the following is most nearly the mass the Earth? (The radius of the Earth is about 6.4×10^6 meters.)

(A)
$$6 \times 10^{24} \text{ kg}$$

(B)
$$6 \times 10^{27} \text{ kg}$$

(C)
$$6 \times 10^{30} \text{ kg}$$

(D)
$$6 \times 10^{33} \text{ kg}$$

(E)
$$6 \times 10^{36} \text{ kg}$$

$$mg = \frac{GMm}{r^2}$$

$$M = \frac{gr^2}{G} = \frac{6^2 \cdot 10 \cdot (10^6)^2}{6 \cdot 10^{-11}}$$

$$M = 6 \cdot 10^{12+1+11} = 6 \cdot 10^{24}$$

Tricks: Dimensional analysis

- Can easily eliminate many possible answers because they have incorrect dimensions
- Quick example (you have 10 seconds to answer)

Q: How tall am I?

(A): 5 dollars

(B): 12 N

(C): 70 Gpa

(D): 6 feet

(E): 14Ω

Tricks: Dimensional analysis

- A slightly harder question:
 - 10. A massless spring with force constant k launches a ball of mass m. In order for the ball to reach a speed v, by what displacement s should the spring be compressed?

(A)
$$s = v \sqrt{\frac{k}{m}}$$

(B)
$$s = v \sqrt{\frac{m}{k}}$$

(C)
$$s = v \sqrt{\frac{2k}{m}}$$

(D)
$$s = v \frac{m}{k}$$

(E)
$$s = v^2 \frac{m}{2k}$$

Tricks: Dimensional analysis

•
$$\lceil \mathbf{v} \rceil = \mathbf{m}/\mathbf{s}$$

•
$$[k] = N/m = kg/s^2$$

•
$$[m] = kg$$

•
$$[k/m] = 1/s^2$$

•
$$[answer] = m$$

•
$$[A] = m/s^2$$

•
$$[B] = m$$

•
$$[C] = m/s^2$$

•
$$[D] = m/s^3$$

•
$$[E] = m^2$$

10. A massless spring with force constant k launches a ball of mass m. In order for the ball to reach a speed v, by what displacement s should the spring be compressed?

(A)
$$s = v \sqrt{\frac{k}{m}}$$

(B)
$$s = v \sqrt{\frac{m}{k}}$$

(C)
$$s = v \sqrt{\frac{2k}{m}}$$

(D)
$$s = v \frac{m}{k}$$

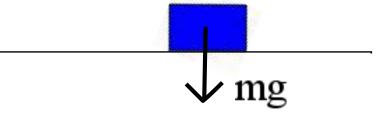
$$(E) \quad s = v^2 \frac{m}{2k}$$

Tricks: Taking Limits

- Examine answers and check to see if they make sense in certain limits
- Quick example:

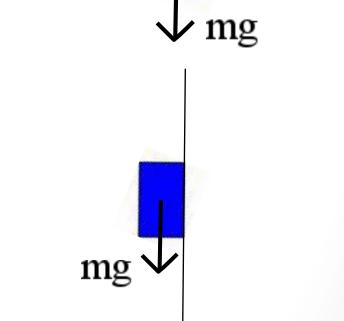
What is the force on the block in the direction parallel to the

ramp?

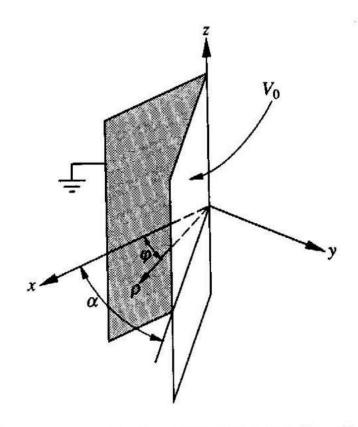

- (A) mg $sin(\theta)$
- (B) mg $cos(\theta)$
- (C) mg $tan(\theta)$

Tricks: Taking Limits

- (A) $mg sin(\theta)$
- (B) $mg cos(\theta)$
- (C) mg $tan(\theta)$


Examine answers and check to see if they make sense in certain limits

- Let $\theta \rightarrow 0$
- Force goes to 0, like $sin(\theta)$ and $tan(\theta)$



- Let $\theta \rightarrow \pi/2$
- Force goes to mg

Answer: $mg sin(\theta)$

Tricks: Taking Limits

12. Two large conducting plates form a wedge of angle α as shown in the diagram above. The plates are insulated from each other; one has a potential V_0 and the other is grounded. Assuming that the plates are large enough so that the potential difference between them is independent of the cylindrical coordinates z and ρ , the potential anywhere between the plates as a function of the angle φ is

- Look at potential at:
 - $\phi \rightarrow 0$
 - $\phi \rightarrow \alpha$
- Which answers make sense?Which answers do not?

(A)
$$\frac{V_0}{\alpha}$$

(B)
$$\frac{V_0\varphi}{\alpha}$$

(C)
$$\frac{V_0\alpha}{\varphi}$$

(D)
$$\frac{V_0 \varphi^2}{\alpha}$$

(E)
$$\frac{V_0\alpha}{\varphi^2}$$