Statistical Mechanics Summary

Maxwell-Boltzmann probability weights
Partition Function

Calculating expectation values using the partition function
* Equipartition theorem

Entropy

Quantum statistical mechanics
* Bosons, Fermions, classical particles
* Blackbody radiation

Additional concepts

* Free electron gas

Diffusion equation

Heat capacity and response functions

Blackbody radiation
Bose-Einstein condensation




Probabilistic Thinking

* An example problem:

15. A sample of N atoms of helium gas is confined
in a 1.0 cubic meter volume. The probability that

none of the helium atomsisina 1.0X 1078
cubic meter volume of the container is

(A) 0 (B) (105" (O (1-10"%¥
(D) 1-(10"%Y (E) 1




Probabilistic Thinking

An example problem:

15. A sample of N atoms of helium gas is confined
in a 1.0 cubic meter volume. The probability that

none of the helium atomsisina 1.0X 1078
cubic meter volume of the container is

A0 B 1Y (© (1-10"
(D) 1-107%Y  (B) I
* Just need to consider the probability of placing all N particles
outside the tiny excluded volume

 P(Outside) = 1-P(Inside) = 1-10°
* Placement of each of the N atoms 1s independent of the
placement of the others

e => P(Outside) N = (1-10-%)N

 Alternatively: take limits! Should the probability be big or
small as N approaches infinity?




Probabilistic Thinking

Classical mechanics 1s purely deterministic

Laplace: can perfectly describe everything given enough time

For many O(10%%) degrees of freedom, phase space becomes too
complicated to describe exactly

If we can’t describe the system exactly, let’s describe it
probabilistically

So we posit:
* System 1s constantly exploring phase space, moving from state to state

* Given that the system has fixed energy, all states with that energy are
available to the system

* The system spends an equal amount of time in each of these states
(probabilities of each of these states are identical)




Maxwell-Boltzmann Probability Weights

* What 1s the probability that the system will be found in a state
with energy E?

_E ,
* Boltzmann weights:  P(E)X e //\'T: e PE

 Can use Boltzmann weights to find the relative probabilities of
being found in two states

 Think of temperature as a parameter that controls the
frequency at which the system jumps from a lower energy state
to a higher energy state




Maxwell-Boltzmann Probability Weights

* Example problem:

7'7. An ensemble of systems is in thermal equilibrium
with a reservoir for which kT = 0.025 eV.
State A has an energy thatis 0.1 eV above that
of state B. If it 1s assumed the systems obey
Maxwell-Boltzmann statistics and that the
degeneracies of the two states are the same, then
the ratio of the number of systems in state A to
the number in state B is

(A) e
(B) e+0.25
O 1
(D) 6_0'25
(B) e




Maxwell-Boltzmann Probability Weights

* Example problem:

7'7. An ensemble of systems is in thermal equilibrium
with a reservoir for which kT = 0.025 eV.
State A has an energy thatis 0.1 eV above that
of state B. If it 1s assumed the systems obey
Maxwell-Boltzmann statistics and that the
degeneracies of the two states are the same, then
the ratio of the number of systems in state A to
the number in state B is

(A) 6+4

(B) e*0® B(E+.1eV)
- PA)X e -

(D) e025 P(B)cx e’

(E) e P(A)/P(B)= e - 1eVA.025¢V) _ -4




Partition Function

Suppose we know the energy E for each system configuration ¢

Sum MB factors over all possible system configurations {c}

7 = Ze-/)’E((i)

{o}

(Note possibility of degeneracy, where many 6’s produce same E)

Observations: Take limits!
e kT->0 |
* kKT>>E 67. A large isolated system of N weakly interacting

particles is in thermal equilibrium. Each particle

' te states of
has only 3 possible nondegenera :
energiez 0, ¢, and 3e. When the system 1§ at an

absolute temperature T >2> ¢/ k, where kfls
Boltzmann’s constant, the average energy o

each particle is

(A)0 (B)e (O fe (D)2 (B) 3




Partition Function

Questions 71-73

A system in thermal equilibrium at temperature 7T
consists of a large number N, of subsystems, each of
which can exist only in two states of energy E, and E,,
where E; — E; = ¢ > 0. In the expressions that follow,
k is the Boltzmann constant.

71. For a system at temperature 7, the average number
of subsystems in the state of energy E; is given by

@) 20

Ny
B TT e

(©) Noe™¢/kT

Ny
2 1 + ef/kT

N, €/kT
®) =55




Partition Function

Questions 71-73

A system in thermal equilibrium at temperature 7T
consists of a large number N, of subsystems, each of
which can exist only in two states of energy E, and E,,
where E; — E; = ¢ > 0. In the expressions that follow,
k is the Boltzmann constant.

71. For a system at temperature 7, the average number
of subsystems in the state of energy E; is given by

@) 20
N,
B) — L7 . o PE@ . ,PEi, P,
(C) Noe™¢/kT {o}
| o PE
O e POlE()=E)=e" = ————=
e '+e? I+e
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Partition Function

* Contains an incredible amount of information

* We don’t measure z, we measure 1ts moments:
* Average system energy is found:

(E)=Y E@e™y 7z = Y MO

{o} {c}
o e—/)E (7)_ E e -PE(c
7 2
L $E( :-—10g7
= Ep=— 5 o2 Z

i

* Question:
* What is the average height of a single molecule of air with mass m?

* (Note: Can also answer with dimensional analysis only)




Partition Function

* Question:
* What is the average height of a single molecule of air with mass m?

* (Note: Can also answer with dimensional analysis only)

0 0
=——log Y e =——_logz
= B=-7 Z o8

1
pmg
0 1 mg

log =fmg=——
o(pmg) pmg kT

-= § : e—/)’mgh X = e -fmgh —
0
h
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Heat Capacity and Response Functions

Response functions measure how a

macroscopic property of the system  72. The internal energy of this system at any tempera-

changes when a control parameter 1s
varied

Calculated using derivatives of the
partition function

Heat capacity: How much energy
does it take to raise the temperature
of an object?

e [C] = Joule/Kelvin
0
= — (Y =
)

Magnetic susceptibility
* How much does the magnetization
change given an applied field?

0 2
FM =

Thermal expansion (V vs. T)
Isothermal compressibility (V vs P)

2

logz
oy

logz

_— Noe
ture T is given by E\N; + T & kT The heat
capacity of the system is given by which of the

following expressions?

" ¢ \2 e€/kT
e N“(ﬁ) 1+ eé/kT)2

€
) Nok(k_) (1 + .«e‘/’cT)2

© Nok(,{—) gEaT
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Equipartition Theorem

* Each degree of freedom that contributes quadratically to
the Hamiltonian (momentum, rotation, oscillation)
contributes % kT to the internal energy of the particle
(and % kg to the specific heat)

* Derived from Gaussian integral form of expectation values




Equipartition Theorem

* Each degree of freedom that contributes quadratically to
the Hamiltonian (momentum, rotation, oscillation)
contributes % kT to the internal energy of the particle
(and % kg to the specific heat)

* Derived from Gaussian integral form of expectation values

* Consider monatomic (ideal) gas:
* Molecule may translate only




Equipartition Theorem

* Each degree of freedom that contributes quadratically to
the Hamiltonian (momentum, rotation, oscillation)
contributes % kT to the internal energy of the particle
(and % kg to the specific heat)

* Derived from Gaussian integral form of expectation values
* Consider monatomic (ideal) gas:

* Molecule may translate only
* Consider diatomic gas:

* Molecule may translate (3), rotate (2), oscillate (1)
* Different modes relevant at different temperatures




Equipartition Theorem

87. 1na gas of N diatomic molecules, two possible
models for a classical description of a diatomic
molecule are:

Model | Model 11
O -O O VWWWWAQ
Rigid Dumbbell Springy Dumbbell

Which of the following statements about this
gas is true?

(A) Model I has a specific heat ¢ = %Nk.

(B) Model II has a smaller specific heat than
Model I.

(C) Model I is always correct.

(D) Model II is always correct.

(E) The choice between Models I and 11
depends on the temperature.




Equipartition Theorem

A diatomic ideal gas of N particles is trapped on a layer of
material, such that the gas molecules are free to move only in
two dimensions. What is the C, of this gas? Assume
temperature is too low for the molecule’s chemical bond to
vibrate.

A. 1/2Nk,
B. Nk

C. 3/2Nk,
D. 2Nk,
E. 5/2Nk,




Entropy

* Microscopic:
* Entropy measures disorder

and 1gnorance: How difficult
1s 1t to make a prediction?

 More available states makes it
difficult to predict the specific
state

S~ logQ
* Macroscopic
F=E-TS
* In real world systems, we
minimize free energy

Hstates

* Maximize entropy as energy is
minimized

Ising Model Phases:
Disordered Ordered

AMVAY A
VAN AN
ANV 2 AN AN A
VANMY A
VYA MM

In which case 1s the
missing spin’s state
easier to predict?




Entropy: Probabilistic Interpretation

* Entropy is maximized when there is maximal ignorance about
the state of the system

* Macroscopically, the system reaches equilibrium is in the most
probable state, which has the largest number of available
microstates

* For systems with many, many degrees of freedom, it becomes
vanishingly unlikely that the system will spontaneously switch to
a lower-probability, lower-entropy state

* Shannon entropy: s = -k ) p, logp,

63. Which of the following is true if the arrangement
of an isolated thermodynamic system is of maximal
probability? |

(A) Spontaneous change to a lower probability
occurs.

(B) The entropy is a minimum.

(C) Boltzmann’s constant approaches zero.

(D) No spontaneous change occurs.

(E) The entropy is zero.




Entropy: counting states

The three-dimensional harmonic oscillator transitions from the
n=1 state to the n=2 state. What is the change in entropy?

A. O

B. hw

C. kg

D. kylog(2)
E. kylog(3)




Relating Entropy to Partition Function

* Try: plug MB weights into the probabilistic interpretation of
entropy

* Results in familiar expression for free energy

S = -k Zpg logp,
S = -k Ze'ﬂE(loge'ﬂE— logz )/z
S = -k(P{E)+logz)

= F = -logz = E-TS




Relating Entropy to Partition Function

* Try: plug MB weights into the probabilistic interpretation of
entropy

* Results in familiar expression for free energy

8 = -k Z p. logp A system in thermal equilibrium at temperature T
g e consists of a large number N, of subsystems, each of
=Y g _pE which can exist only in two states of energy E, and E,,
S = -k Ze / (loge - logz >/Z where E; — E; = ¢ > 0. In the expressions that follow,
k is the Boltzmann constant.

(o2
S = -k (ﬂ<E> * logz ) 73. Which of the following is true of the entropy of the
system?
=> F = - 10gz = E-TS (A) It increases without limit with 7' from zero at
T =0

(B) It decreases with increasing 7.
(C) Itincreases fromzeroat T =0 to NpkIn2 at
arbitrarily high temperatures.

(D) Itis given by Nok[% In7T —Inp + constant].

(E) It cannot be calculated from the information
given.




Relating Entropy to Partition Function

A system in thermal equilibrium at temperature T

* Calculation: consists of a large number N; of subsystems, each of

R . — B - which can exist only in two states of energy E, and E,,
Use: § /\(ﬁ<E>+ IOCZ ) where E; — E; = ¢ > 0. In the expressions that follow,

* As T->c0, B_>O k is the Boltzmann constant.

e Need to calculate z: 13 s“y/sl::;l:?of the following is true of the entropy of the
r=e el 5001 0%=2 (A) It i7r11crcaoses without limit with 7 from zero at

(B) It decreases with increasing 7.
(C) Itincreases fromzeroat T = 0 to NykIn2 at
arbitrarily high temperatures.

(D) Itis given by Nok[% InT —Inp + constant].
* Intuition: (E) It cannot be calculated from the information
(D): 1s for 1deal gases gven.
(B): Higher temperature means higher probability of jumping between
states => more disorder and entropy

(A) & (C): For high temperatures, we know all energy states approach
equal probability, so there probably a finite cutoff instead of a
boundless increase




Quantum Statistical Mechanics

72. Which of the following statements about bosons
and/or fermions is true?

(A) Bosons have symmetric wave functions and
obey the Pauli exclusion principle.

(B) Bosons have antisymmetric wave functions
and do not obey the Pauli exclusion
principle.

(C) Fermions have symmetric wave functions and
obey the Pauli exclusion principle.

(D) Fermions have antisymmetric wave functions
and obey the Pauli exclusion principle.

(E) Bosons and fermions obey the Pauli
exclusion principle.




Quantum Statistical Mechanics

* Fermions obey the Pauli Exclusion Principle:

* No two can occupy the same state at the same time

* Occupation numbers n,= 0 or 1

5 : ..
* Creates “degeneracy pressure” in a Fermionic gas

* No restriction on Boson occupation numbers:

° n,=0,1,2,3, etc.

* Average occupation number of
states by Bosons and Fermions
with energy E:

1
(ng,, =
> Bosons e P(E-p) » ]

1

LD pormions™
Fermions e/f(E—,“) 4 ]
1
— — PE-

<nE> Classical ™~ —¢ /)(/l)

88. Consider a system of N noninteracting particles

confined in a volume V at a temperature such
that the particles obey classical Boltzmann
statistics. If the temperature is lowered to the
point at which quantum effects become
important, the pressurc of the gas may differ
depending on whether the particles are fermions
or bosons. Let P be the pressure exerted by

the particles if they are fermions, P, be the
pressure if they are bosons, and PC be the

pressure the particles would exert if quantum
effects are ignored. Which of the following is
true?

(A) Pp=Py= P
(B) P> P> Py
€ PuPy P
(D) P APy <P,
(B) PSP B,




Blackbody Radiation

* Radiation from a body at

thermodynamic equilibrium

with its surroundings

* Treats object as a gas of
discrete bosonic photons

* Absorbs all incoming
photons, emits photons on
continuous spectrum

* Examples
* The Sun
* Your body in outer space
* Characteristic spectrum
(W/m?/s/steradian)

Spectral radiance (kW - sr' -m=2- nm™")

B(4.1)=

2hv’ I
C2 ¢ (hu/kgT) _ ]

Classical theory (5000 K)

Wavelength (um)

http://en.wikipedia.org/wiki/Black-body_radiation



Rules to Remember

* Scaling of total energy flux (J/m?/s) vs temperature
(Stefan-Boltzmann Law)

J=0T", 6=5.67%10"° Wm>K™?

 Scaling of spectrum peak wavelength vs temperature
(Wien’s Law)

/lmax: bT—]




