Particle Physics Summary

- Begin with the Standard Model
 - Know the different properties of fundamental particles
- What quantities are conserved?
 - Charge, spin angular momentum
 - Lepton number
 - Baryon number
- Weak interactions
 - Interacts with fermions
 - Mediates particle decay
 - Quarks can change flavor
- Interactions between particles and matter
- Other topics:
 - Additional symmetries: Parity, Charge-parity
 - Zoo of subatomic mesons and baryons
 - Interaction cross sections

Some Experimental Context

- Where do "particles" come from?
 - Radioactive decay (n, e⁺, etc)
 - The environment, such as products from Cosmic Rays (muons, etc)
 - Accelerators, such as the LHC (quarks, etc)
- How do we "see" them?
 - Cloud chambers
 - Bubble chambers
 - Scintillators
- How do we measure their properties?
 - Interactions with matter
 - Indirectly through decay products

http://en.wikipedia.org/wiki/File:CERN LHC Tunnel1.jpg

http://en.wikipedia.org/wiki/Cloud chamber

The Standard Model

The Standard Model

- All elementary, non-composite particles that we know of (so far)
- Quarks
 - 6 flavors
 - Fractional charge
 - Fermions
 - Up/Down make up protons, neutrons
- Leptons
 - 3 flavors
 - Fermions
 - Electrons and heavier electrons
 - Neutrinos, chargeless and (practically) massless
- Force Carriers
 - Bosons
 - Photons carry Electromagnetic Force
 - Gluons carry Strong Nuclear Force
 - W/Z carry Weak Nuclear Force
- (Probably don't need Higgs physics for test)

- 63. According to the Standard Model of elementary particles, which of the following is NOT a composite object?
 - (A) Muon
 - (B) Pi-meson
 - (C) Neutron
 - (D) Deuteron
 - (E) Alpha particle

Conserved Quantities

- Most particle physics GRE questions deal with nuclear reactions and other types of decay processes
- Typically, reactions obey conservation laws
- What you probably already know:
 - Momentum and Energy
 - Charge
 - Angular momentum (spin)
- New concepts from particle physics:
 - Lepton Number
 - Baryon Number
 - Other quantities violated in Weak interactions only:
 - Strangeness
 - Parity
 - Charge-Parity

Lepton Number

- 3 flavors of lepton (electron, muon, tauon)
 - Note: each electron-like particle has a corresponding neutrino with the same flavor, eg muon and muon neutrino
- The number of particles belonging to each flavor of lepton is conserved
- NB: anti-particles contribute negative lepton number
 - Example: anti-electrons (e⁺) have electron number -1
- 98. Which of the following is the principal decay mode of the positive muon μ^+ ?

(A)
$$\mu^+ \rightarrow e^+ + v_e$$

(B)
$$\mu^+ \to p + \nu_\mu$$

(C)
$$\mu^+ \rightarrow n + e^+ + v_e$$

(D)
$$\mu^+ \rightarrow e^+ + v_e + \overline{v}_{\mu}$$

(E)
$$\mu^+ \rightarrow \pi^+ + \overline{\nu}_e + \nu_\mu$$

Lepton Number Example

- Need to conserve charge (doesn't eliminate any results)
- Need to conserve muon number and electron number:
 - (A) -1 mu -> -1 e + 1 e
 - (B) -1 mu -> proton? + 1 mu
 - (C) -1 mu -> neutron? -1 e + 1 e
 - (D) -1 mu -> -1 e + 1 e -1 mu
 - (E) -1 mu -> pion? 1 e + 1 mu

- 98. Which of the following is the principal decay mode of the positive muon μ^+ ?
 - (A) $\mu^+ \rightarrow e^+ + \nu_e$
 - (B) $\mu^+ \to p + v_\mu$
 - (C) $\mu^+ \rightarrow n + e^+ + v_e$
 - (D) $\mu^+ \rightarrow e^+ + v_e + \overline{v}_{\mu}$
 - (E) $\mu^+ \rightarrow \pi^+ + \overline{\nu}_e + \nu_\mu$

Additional example:

- 78. The muon decays with a characteristic lifetime of about 10⁻⁶ second into an electron, a muon neutrino, and an electron antineutrino. The muon is forbidden from decaying into an electron and just a single neutrino by the law of conservation of
 - (A) charge
 - (B) mass
 - (C) energy and momentum
 - (D) baryon number
 - (E) lepton number

Baryons

- Composite particles made up of 3 quarks
- Examples:
 - Proton = 2 up + 1 down
 - Neutron = 2 down + 1 up
 - Most matter consists of baryons
- All baryons are fermions
- Baryon number = (number of quarks number of antiquarks)/3
 - So protons and neutrons have B = +1
 - Anti-protons have B = -1
- Other (more exotic examples)
 - Δ (3 up/down quarks)
 - Λ , Σ (2 up/down quarks)
 - ∃ (1 up/down quark)
 - Ω (0 up/down quarks)

... as opposed to Mesons

- Composite particles made up of one quark and one antiquark
 - These particles appear as decay products (for example from cosmic rays)
- Examples:
 - Pions: $\pi^+ \pi^- \pi^0$, consist of up/down quarks
 - Kaons: K⁺ K⁻ K⁰, consist of one up/down quark, one strange quark
- Baryon number is 0
- (Side note: Older literature may refer to muons as mesons, though now we know they are leptons.)

The Weak Interaction

- Interacts with all fermions
- Mediated by Z, W⁺, W⁻ bosons
- Responsible for all decay of subatomic particles
 - Produces a whole zoo of possible interactions
- Certain symmetries are violated by Weak Interactions:
 - Quarks change flavor
 - Parity (also charge-parity)
- Example: Beta decay
 - Nuclear scale: $n > p^+ + e^- v_e$
 - Sub-nuclear (quark) scale:

$$d -> u + e^{-} - v_{e}$$

Gauge bosons

$$^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ + v_e$$

- 63. The nuclear decay above is an example of a process induced by the
 - (A) Mössbauer effect
 - (B) Casimir effect
 - (C) photoelectric effect
 - (D) weak interaction
 - (E) strong interaction

Weak Interaction Example

- 91. The particle decay $\Lambda \rightarrow p + \pi^-$ must be a weak interaction because
 - (A) the π^- is a lepton
 - (B) the Λ has spin zero
 - (C) no neutrino is produced in the decay
 - (D) it does not conserve angular momentum
 - (E) it does not conserve strangeness
- (A) Pions are mesons, not leptons
- (B) Weak interactions only affect fermions (Λ and p have spin $\frac{1}{2}$)
- (C) Only need neutrinos to conserve lepton number, not necessary for every weak interaction
- (D) Looks like angular momentum is conserved
- (E) Strangeness counts number of strange quarks. Since quarks can change flavor under weak interactions, this could be right

Strong Interaction

- Responsible for holding quarks together
 - Hadrons: includes mesons and baryons
- Mediated by gluons
- "Massive photons" follow the Yukawa potential

$$V(r) \propto \frac{e^{-kr}}{r}$$

(Same as charge-screened potential for electrons in matter)

How do particles interact with matter?

- Treat the interaction between incident particles and matter probabilistically, with some probability of scattering occurring
 - Probability: Cross sections are measured in units of area
- Not totally necessary to memorize rules for cross sections, but can list some rules of thumb that build on physical intuition
 - Charged particles interact with electrons in matter, so the higher
 Z of the matter, the more likely they are to interact
 - Lighter particle mass scatter more easily (less inertia => easier to change momentum)
 - 25. In experiments located deep underground, the two types of cosmic rays that most commonly reach the experimental apparatus are
 - (A) alpha particles and neutrons
 - (B) protons and electrons
 - (C) iron nuclei and carbon nuclei
 - (D) muons and neutrinos
 - (E) positrons and electrons

How do photons interact with matter?

- Photons primarily interact with atomic electrons
- Three primary processes (which you need to know for the test)
 - Compton Scattering
 - Photoelectric effect
 - Pair production
- Important to know:
 - Why does the photoelectric effect only occur with atomic electrons (as opposed to free)?
 - Why can't pair production occur in vacuum?

- 85. The figure above shows the photon interaction cross sections for lead in the energy range where the Compton, photoelectric, and pair production processes all play a role. What is the correct identification of these cross sections?
 - (A) 1 = photoelectric, 2 = Compton, 3 = pair production
 - (B) 1 = photoelectric, 2 = pair production, 3 = Compton
 - (C) 1 = Compton, 2 = pair production, 3 = photoelectric
 - (D) 1 = Compton, 2 = photoelectric, 3 = pair production
 - (E) 1 = pair production, 2 = photoelectric, 3 = Compton